Survey of Pesticide Industry in China

The Sixth Edition

January 2018

Researched & Prepared by:
Kcomber Inc.
Copyright by Kcomber Inc.
Any publication, distribution or copying of the content in this report is prohibited.
Contents

Executive summary .. 1
Definition, scope and methodology .. 4

1 Overview of China’s pesticide industry .. 8
 1.1 Development history ... 8
 1.2 Market characteristics .. 9
 1.3 Enterprise M&A ... 10
 1.4 Market analysis ... 16
 1.4.1 Supply and demand .. 16
 1.4.2 Producers ... 17
 1.4.3 Typical pesticides .. 19

2 Factors influencing Chinese pesticide industry ... 20
 2.1 Policy factor ... 20
 2.1.1 Industrial policy for pesticide industry .. 21
 2.1.2 Pesticide registration administration policies ... 24
 2.1.3 Sewage discharge regulations related to pesticides ... 26
 2.2 Social environmental factors ... 29
 2.2.1 Characteristics of pesticide users .. 29
 2.2.2 Urbanization .. 30
 2.2.3 Controversial issues on safety of GM crops .. 31
 2.3 Economic factors ... 32
 2.4 Natural environmental factors ... 34
 2.4.1 Crop cultivation (structure and area) .. 34
 2.4.2 GM crops .. 35
 2.4.3 Non-tillage crops .. 37
 2.4.4 Pest and disease occurrence and resistance ... 37
 2.5 Technological factors .. 40

3 Market analysis of major insecticides in China ... 43
 3.1 Overview of Chinese insecticide industry ... 43
 3.2 Chlorpyrifos ... 45
 3.3 Abamectin .. 54
 3.4 Imidacloprid .. 61
 3.5 Acephate .. 69
 3.6 Thiamethoxam ... 76
 3.7 Lambda-cyhalothrin ... 80

4 Market analysis of major herbicides in China .. 85
 4.1 Overview of Chinese herbicide industry .. 85
 4.2 Glyphosate ... 86
 4.3 Acetochlor ... 94
 4.4 Paraquat .. 100
 4.5 Dicamba .. 106
 4.6 Glufosinate-ammonium ... 111

www.cnchemicals.com E-mail: econtact@cnchemicals.com
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Development history of China's pesticide industry</td>
</tr>
<tr>
<td>1.2</td>
<td>Major M&A cases in China's pesticide industry, 2011–2013</td>
</tr>
<tr>
<td>1.3</td>
<td>List of eight batches of M&A in China's pesticide industry, 2012</td>
</tr>
<tr>
<td>1.4</td>
<td>List of seven batches of M&A in China's pesticide industry, 2013</td>
</tr>
<tr>
<td>1.5</td>
<td>List of nine batches of M&A in China's pesticide industry, 2014</td>
</tr>
<tr>
<td>1.6</td>
<td>List of two batches of M&A in China's pesticide industry, as of Oct. 2017</td>
</tr>
<tr>
<td>1.7</td>
<td>Output of chemical pesticides (calculated by 100% technical) in China by product</td>
</tr>
</tbody>
</table>

LIST OF TABLES

Table 1.4.1-1 Output of chemical pesticides (calculated by 100% technical) in China by product
category, 2013–2016, '000 tonne

Table 1.4.1-2 Consumption volume of pesticides (calculated by 100% TC) in China by product category, 2013–2016, tonne

Table 1.4.1-3 China's imports and exports of pesticides, 2013–2016

Table 1.4.1-4 Consumption volume (by technical) of pesticides in China, 2007–2012, tonne

Table 2.1.1 Output of main pesticide technical in China, 2016

Table 2.1.1-1 Major administrations and policies on pesticides or pesticide industry in China

Table 2.1.1-2 Basic registration policies in Chinese pesticide industry, as of Oct. 2017

Table 2.1.1-3 Components of effluent standards of pollutants for pesticide industry in China

Table 2.1.1-4 Integrated wastewater discharge standard (GB8978-1996), mg/L

Table 2.1.1-5 Environmental protection policies and environmental cost in pesticide industry in China

Table 2.1.2 Per capita disposable income of urban residents in China, 2000–2016

Table 2.4.2-1 Key regulations on GMO and GM technology in China, as of Oct. 2017

Table 2.4.2-2 Advantages of non-tillage cultivation technique

Table 2.4.2-3 China’s pest and disease occurrence, 2017

Table 2.4.2-4 Common pesticide-resistant insect pests and diseases in China

Table 2.5.1 Technologies promoted by the Chinese government, as of Oct. 2017

Table 3.1.1 Major varieties of insecticides in China

Table 3.2.1 Registrations of chlorpyrifos in China, as of 1 Nov., 2017

Table 3.2.2 Capacity and output of main chlorpyrifos technical producers in China, 2016–H1 2017

Table 3.2.3 Comparison between trichloroacetyl chloride route and pyridine route in the production of STCP

Table 3.2.4 Production, export, import and apparent consumption of chlorpyrifos in China, 2012–2016

Table 3.3-1 Registrations of abamectin in China, as of 1 Nov., 2017

Table 3.3-2 Capacity and output of main abamectin technical producers in China, 2016–H1 2017

Table 3.3-3 Comparison of two fermentation routes for abamectin production in China

Table 3.3-4 Output, export, import and apparent consumption of abamectin in China, 2012–2016, tonne

Table 3.4-1 Registrations of imidacloprid in China, as of 1 Nov., 2017

Table 3.4-2 Capacity and output of main imidacloprid technical producers in China, 2016 and H1 2017

Table 3.4-3 Comparison of major imidacloprid production routes in China

Table 3.4-4 Output, export, import and apparent consumption of imidacloprid (calculated by 100% TC) in China, 2012–2016, tonne

Table 3.5-1 Registrations of acephate in China, as of 1 Nov., 2017

Table 3.5-2 Capacity and output of main acephate technical producers in China, 2016 and H1 2017

Table 3.5-3 Output, export, apparent consumption of acephate in China, 2012–2016, tonne
Table 3.6-1 Registrations of thiamethoxam in China, as of 1 Nov., 2017
Table 3.6-2 Capacity and output of thiamethoxam technical producers in China, 2016–H1 2017
Table 3.7-1 Registrations of lambda-cyhalothrin in China, as of 1 Nov., 2017
Table 3.7-2 Capacity and output of main lambda-cyhalothrin technical producers in China, 2016 and H1 2017
Table 3.7-3 Output, export, import and apparent consumption of lambda-cyhalothrin in China, 2012–2016, tonne
Table 4.1-1 Classifications of herbicides
Table 4.1-2 Output of major herbicide technical in China, 2011–2016, tonne
Table 4.2-1 Registrations of glyphosate in China, as of 1 Nov., 2017
Table 4.2-2 Capacity and output of main glyphosate technical producers in China, 2016–2017
Table 4.2-3 Key glyphosate formulations in China
Table 4.2-4 Output of key glyphosate formulations in China, 2012–H1 2017, tonne
Table 4.2-5 Output, export, import and apparent consumption of glyphosate in China, 2012–2016, tonne
Table 4.2-6 Consumption and market share of glyphosate formulations in China, 2012–H1 2017
Table 4.2-7 Planting area of main crops in China, 2012–2016, '000 hectare
Table 4.3-1 Registrations of acetochlor in China, as of 1 Nov., 2017
Table 4.3-2 Capacity and output of main acetochlor technical producers in China, 2016–H1 2017
Table 4.3-3 Comparison on Al content and yield coefficient of acetochlor between methylene route and ether route in China
Table 4.3-4 Output, export, import and apparent consumption of acetochlor in China, 2012–2016, tonne
Table 4.4-1 Registrations of paraquat in China, as of 1 Nov., 2017
Table 4.4-2 Capacity and output of paraquat TK manufacturers in China, 2016–H1 2017
Table 4.5-1 Registrations of dicamba in China, as of 1 Nov., 2017
Table 4.5-2 Capacity and output of major producers of dicamba technical in China, 2016–H1 2017
Table 4.5-3 Production, export and apparent consumption of dicamba in China, 2012–2016
Table 4.6-1 Registrations of glufosinate-ammonium in China, as of 1 Nov., 2017
Table 4.6-2 Capacity and output of glufosinate-ammonium technical (converted to 95% TC) by producer in China, 2016–H1 2017
Table 4.7-1 Registrations of 2,4-D in China, as of 1 Nov., 2017
Table 4.7-2 Capacity and output of main 2,4-D technical producers in China, 2016–H1 2017
Table 4.7-3 Production, export, import and apparent consumption of 2,4-D in China, 2012–2016, tonne
Table 5.1-1 Classification and major products of fungicides in China
Table 5.2-1 Registrations of mancozeb in China, as of 1 Nov., 2017
Table 5.2-2 Capacity and output of main mancozeb technical producers in China, 2016–H1 2017
Table 5.2 Output, export, import and apparent consumption of mancozeb in China, 2012–2016, tonne
Table 5.3-1 Registrations of carbendazim in China, as of 1 Nov., 2017
Table 5.3-2 Capacity and output of main carbendazim technical producers in China, 2016–H1 2017
Table 5.3-3 Output, export, import and apparent consumption of carbendazim in China, 2013–2016, tonne
Table 5.3-4 Consumption volume of carbendazim formulations in China, 2013–2016
Table 5.4-1 Registrations of tebuconazole in China, as of 1 Nov., 2017
Table 5.4-2 Capacity and output of tebuconazole technical producers in China, 2016–H1 2017
Table 5.4-3 Output, export, import and apparent consumption of tebuconazole in China, 2013–2016, tonne
Table 5.4-4 Consumption volume of tebuconazole in China, 2013–2016
Table 5.5-1 Registrations of difenoconazole in China, as of 1 Nov., 2017
Table 5.5-2 Capacity and output of main difenoconazole technical producers in China, 2016–H1 2017
Table 5.5-3 Output, export, import and apparent consumption of difenoconazole in China, 2012–2016, tonne
Table 5.5-4 Consumption and market value of difenoconazole in China, 2012–2016
Table 5.6-1 Registrations of chlorothalonil in China, as of 1 Nov., 2017
Table 5.6-2 Capacity and output of main chlorothalonil technical producers in China, 2016–H1 2017
Table 5.6-3 Output, export, import and apparent consumption of chlorothalonil in China, 2012–2016, tonne
Table 5.6-4 Consumption volume of chlorothalonil formulations in China, 2012–2016
Table 5.7-1 Registrations of azoxystrobin in China, as of 1 Nov., 2017
Table 5.7-2 Capacity and output of main azoxystrobin technical producers in China, 2016–H1 2017
Table 5.7-3 Comparison between different routes for producing azoxystrobin technical in China
Table 5.7-5 Output, export, import and apparent consumption of azoxystrobin in China, 2012–2016, tonne
Table 5.7-6 Apparent consumption and market value of azoxystrobin formulations in China, 2012–2016
Table 6.1-1 Basic info of Nanjing Red Sun Co., Ltd.
Table 6.1-2 Major pesticide technical species of Nanjing Red Sun Co., Ltd., 2016
Table 6.1-3 Capacity and output of major pesticide products in Nanjing Red Sun Co., Ltd., 2016–H1 2017
Table 6.2-1 Basic info of Zhejiang Wynca Chemical Industry Group Co., Ltd.
Table 6.2-2 Major pesticide species of Zhejiang Wynca Chemical Industry Group Co., Ltd., 2016
Table 6.2-3 Capacity and output of major pesticide products in Zhejiang Wynca Chemical Industry Group Co., Ltd., 2016–H1 2017
Table 6.3-1 Basic info of Jiangsu Yangnong Chemical Co., Ltd.
Table 6.3-2 Major pesticide species of Jiangsu Yangnong Chemical Co., Ltd., 2016
Table 6.3-3 Capacity and output of major pesticide products in Jiangsu Yangnong Chemical Group Co., Ltd., 2016–H1 2017
Table 6.4-1 Basic info of Shandong Weifang Rainbow Chemical Co., Ltd.
Table 6.4-2 Factories of Shandong Rainbow and its main products
Table 6.4-3 Capacity and output of major pesticide products in Shandong Weifang Rainbow Chemical Co., Ltd., 2016–H1 2017
Table 6.5-1 Basic info of Zhejiang Jinfanda Biochemical Co., Ltd.
Table 6.5-2 Major pesticide species of Zhejiang Jinfanda Biochemical Co., Ltd., 2016
Table 6.5-3 Capacity and output of glyphosate technical in Zhejiang Jinfanda Biochemical Co., Ltd., 2016–H1 2017
Table 6.6-1 Basic info of Hubei Sanonda Co., Ltd.
Table 6.6-2 Capacity of major products in Hubei Sanonda, 2016
Table 6.6-3 Major formulation species of Hubei Sanonda Co., Ltd., 2016
Table 6.6-4 Capacity and output of major pesticide products in Hubei Sanonda Co., Ltd., 2016–H1 2017
Table 6.7-1 Basic info of Nantong Jiangshan Agrochemical & Chemicals Co., Ltd.
Table 6.7-2 Major pesticide species of Nantong Jiangshan Agrochemical & Chemicals Co., Ltd., 2016
Table 6.7-3 Capacity and output of major pesticide products in Nantong Jiangshan Agrochemical & Chemicals Co., Ltd., 2016–H1 2017
Table 6.8-1 Basic info of Shandong Binnong Technology Co., Ltd.
Table 6.8-2 Major pesticide species of Shandong Binnong Technology Co., Ltd., 2016
Table 6.8-3 Capacity and output of major pesticide products in Shandong Binnong Technology Co., Ltd., 2016–H1 2017
Table 6.9-1 Basic info of Jiangsu Changlong Agrochemical Co., Ltd.
Table 6.9-2 Major pesticide species of Jiangsu Changlong Agrochemical Co., Ltd., 2016
Table 6.9-3 Capacity and output of major pesticide products in Jiangsu Changlong Agrochemical Co., Ltd., 2016–H1 2017
Table 6.10-1 Basic info of Jiangsu Fengshengan Group Co., Ltd.
Table 6.10-2 Major pesticide technical species of Jiangsu Fengshengan Group Co., Ltd., 2016
Table 6.10-3 Major pesticide formulation species of Jiangsu Fengshengan Group Co., Ltd., 2016
Table 6.10-4 Capacity and output of major pesticide products in Jiangsu Fengshengan Group Co., Ltd., 2016–H1 2017
Table 6.11-1 Basic info of Jiangsu Kwin Group Co., Ltd.
Table 6.11-2 Major pesticide formulation species of Jiangsu Kwin Group Co., Ltd., 2016
Table 6.11-3 Capacity and output of major pesticide products in Jiangsu Kwin Group Co., Ltd., 2016–H1 2017
Table 6.12-1 Basic info of Shandong Qiaochang Chemical Co., Ltd.
Table 6.12-2 Major pesticide species of Shandong Qiaochang Chemical Co., Ltd., 2016
Table 6.12-3 Capacity and output of major pesticide products in Shandong Qiaochang
Table 6.13-1 Basic info of Jiangsu Changqing Agrochemical Co., Ltd.
Table 6.13-2 Major pesticide technical species of Jiangsu Changqing Agrochemical Co., Ltd., 2016
Table 6.13-3 Major pesticide formulation species of Jiangsu Changqing Agrochemical Co., Ltd., 2016
Table 6.13-4 Capacity and output of major pesticide products in Jiangsu Changqing Agrochemical Co., Ltd., 2016–H1 2017
Table 6.14-1 Basic info of Jiangsu Huifeng Agrochemical Co., Ltd.
Table 6.14-2 Major pesticide technical species of Jiangsu Huifeng Agrochemical Co., Ltd., 2016
Table 6.14-3 Major pesticide formulation species of Jiangsu Huifeng Agrochemical Co., Ltd., 2016
Table 6.14-4 Capacity and output of major pesticide products in Jiangsu Huifeng Agrochemical Co., Ltd., 2016–H1 2017
Table 6.15-1 Basic info of Lianhe Chemical Technology Co., Ltd.
Table 6.15-2 Capacity and output of major pesticide products in Jiangsu Lianhe Chemical Technology Co., Ltd., 2016–H1 2017
Table 6.16-1 Basic info of Hunan Haili Chemical Industry Co., Ltd.
Table 6.16-2 Major pesticide species of Hunan Haili Chemical Industry Co., Ltd., 2016
Table 6.16-3 Capacity and output of major pesticide products in Hunan Haili Chemical Industry Co., Ltd., 2016–H1 2017
Table 6.17-1 Basic info of Jiangsu Good Harvest-Weien Agrochemical Co., Ltd.
Table 6.17-2 Major pesticide species of Jiangsu Good Harvest-Weien Agrochemical Co., Ltd., 2016
Table 6.17-3 Capacity and output of glyphosate technical in Jiangsu Good Harvest-Weien Agrochemical Co., Ltd., 2016–H1 2017
Table 6.18-1 Basic info of Zhejiang Zhongshan Chemical Industry Group Co., Ltd.
Table 6.18-2 Capacity and output of major pesticide products in Zhejiang Zhongshan Chemical Industry Group Co., Ltd., 2016–H1 2017
Table 6.19-1 Basic info of Lier Chemical Co., Ltd.
Table 6.19-2 Major pesticide species of Lier Chemical Co., Ltd., 2016
Table 6.19-3 Capacity and output of major pesticide products in Lier Chemical Co., Ltd., 2016–H1 2017
Table 6.20-1 Basic info of Anhui Guangxin Agrochemical Co., Ltd.
Table 6.20-2 Major pesticide species of Anhui Guangxin Agrochemical Co., Ltd., 2016
Table 6.20-3 Capacity and output of major pesticide products in Anhui Guangxin Agrochemical Co., Ltd., 2016–H1 2017
Table 6.21-1 Basic info of Jiangsu Lanfeng Biochemical Co., Ltd.
Table 6.21-2 Major pesticide technical species of Jiangsu Lanfeng Biochemical Co., Ltd., 2016
Table 6.21-3 Major pesticide formulation species of Jiangsu Lanfeng Biochemical Co., Ltd., 2016
Table 6.21-4 Major intermediate species of Jiangsu Lanfeng Biochemical Co., Ltd., 2016
Table 6.21-5 Capacity and output of major pesticide products in Jiangsu Lanfeng Biochemical Co., Ltd., 2016–H1 2017
Table 6.22-1 Basic info of Limin Chemical Co., Ltd.
Table 6.22-2 Major pesticide species of Limin Chemical Co., Ltd., 2016
Table 6.22-3 Capacity and output of major pesticide products in Limin Chemical Co., Ltd., 2016–H1 2017
Table 6.23-1 Basic info of Jiangsu Sevencontinent Green Chemical Co., Ltd.
Table 6.23-2 Major pesticide species of Jiangsu Sevencontinent Green Chemical Co., Ltd., 2016
Table 6.23-3 Capacity and output of major pesticide products in Jiangsu Sevencontinent Green Chemical Co., Ltd., 2016–H1 2017

LIST OF FIGURES
Figure 1.3-1 Sales value of top pesticide enterprises in China, 2010–2016
Figure 1.4.1-1 Output share of chemical pesticide technical (calculated by 100% TC) in China by region, 2015
Figure 2.2.2-1 Proportion of urban population at year-end, 2007–2016
Figure 2.3-1 Per capita net income of rural residents in China, 2000–2016
Figure 2.4.1-1 Annual cultivation area of crops in China, 2000–2016
Figure 2.4.1-2 Planting structure of crops in China, 2016
Figure 2.4.2-1 GM crop planting area in China, 2000–2016
Figure 3.1-1 Output and growth rate of insecticides in China, 2007–2016
Figure 3.1-2 Consumption of insecticides in China by product category, 2016
Figure 3.2-1 Capacity and output of chlorpyrifos technical in China, 2012–H1 2017
Figure 3.2-2 Chemical principle of chlorpyrifos synthesis in China
Figure 3.2-3 STCP synthesis by trichloroacetyl chloride route
Figure 3.2-4 STCP synthesis by pyridine route
Figure 3.2-5 General production process of chlorpyrifos technical by trichloroacetyl chloride route
Figure 3.2-6 Manufacturing process of TCP from pyridine
Figure 3.2-7 Annual ex-works price of 95% chlorpyrifos technical in China, 2012–2016
Figure 3.2-8 Monthly ex-works price of 95% chlorpyrifos technical in China, Jan. 2014–Oct. 2017
Figure 3.2-9 Monthly ex-works price of chlorpyrifos 480g/L EC in China, Jan. 2014–Oct. 2015
Figure 3.2-10 Actual consumption of chlorpyrifos (converted to 97% TC) in China, 2012–2016, tonne
Figure 3.2-11 Consumption of chlorpyrifos in China by crop, 2016
Figure 3.2-12 Forecast on output of chlorpyrifos technical in China, 2017–2021
Figure 3.2-13 Forecast on demand for chlorpyrifos (calculated by 97% TC) in China, 2017–2021
Figure 3.3-1 Capacity and output of abamectin technical in China, 2012–H1 2017
Figure 3.3-2 Process route of abamectin technical in China
Figure 3.3-3 Annual ex-works price of 95% abamectin technical in China, 2012–2016
Figure 3.3-4 Monthly ex-works price of 95% abamectin technical in China, Jan. 2014–Oct. 2017
Figure 3.3-5 Consumption of abamectin in China by crop, 2016
Figure 3.3-6 Forecast on output of abamectin technical in China, 2017–2021
Figure 3.3-7 Forecast on demand for abamectin (calculated by 95% TC) in China, 2017–2021
Figure 3.4-1 Capacity and output of imidacloprid technical in China, 2012–H1 2017
Figure 3.4-2 CCMP synthesis for imidacloprid production by DCPD route
Figure 3.4-3 Process flow chart of imidacloprid technical by DCPD route
Figure 3.4-4 Monthly average ex-works price of 97% imidacloprid technical in China, Jan. 2014–Oct. 2017
Figure 3.4-5 Monthly ex-works price of imidacloprid 10% WP in China, Jan. 2011–Oct. 2015
Figure 3.4-6 Actual consumption volume of imidacloprid (calculated by 100% TC) in China, 2012–2016
Figure 3.4-7 Consumption of imidacloprid in China by crop, 2016
Figure 3.4-8 Forecast on demand for imidacloprid (calculated by 100% TC) in China, 2017–2021
Figure 3.4-9 Forecast on demand for imidacloprid (calculated by 100% TC) in China, 2017–2021
Figure 3.5-1 Capacity and output of acephate technical in China, 2012–H1 2017
Figure 3.5-2 Isomerization chemical reaction in acephate production in China
Figure 3.5-3 Chemical equation of making acephate, adopting acetic anhydride as acidylating agents
Figure 3.5-4 Chemical equation of making acephate, adopting acetyl chloride acylation as acidylating agents
Figure 3.5-5 Chemical equation of making acephate, adopting acetic acid and phosphorus trichloride as acidylating agents
Figure 3.5-6 Process flow of acephate production
Figure 3.5-7 Annual average ex-works price of 97% acephate technical in China, 2012–2016
Figure 3.5-8 Monthly ex-works price of 97% acephate technical in China, Jan. 2014–Oct. 2017
Figure 3.5-9 Monthly ex-works price of acephate 30% EC in China, Jan. 2014–Oct. 2015
Figure 3.5-10 Actual consumption of acephate (calculated by 97% TC) in China, 2012–2016
Figure 3.5-11 Consumption of acephate by crop in China, 2016
Figure 3.5-12 Forecast on output of acephate technical in China, 2017–2021
Figure 3.5-13 Forecast on demand for acephate (calculated by 97% TC) in China, 2017–2021
Figure 3.6-1 Capacity and output of thiamethoxam technical in China, 2012–H1 2017
Figure 3.6-2 Synthetic route of thiamethoxam in China
Figure 3.6-3 Synthetic route of 2-chloro-5-chloromethylthiazole in China
Figure 3.6-4 Synthetic route of nitroguanidine in China
Figure 3.6-5 Synthetic route of 3-methyl-4-nitroiminoperhydro-1,3,5-oxadiazine in China
Figure 3.6-6 Monthly ex-works price of 97% thiamethoxam technical in China, Jan.
Figure 3.6-7 Consumption of thiamethoxam in China by application, 2016
Figure 3.6-8 Forecast on output of thiamethoxam technical in China, 2017–2021
Figure 3.6-9 Forecast on apparent consumption of thiamethoxam (calculated by 97% TC) in China, 2017–2021
Figure 3.7-1 Capacity and output of lambda-cyhalothrin technical in China, 2012–H1 2017
Figure 3.7-2 Annual ex-works price of 95% lambda-cyhalothrin technical in China, 2012–2016
Figure 3.7-3 Monthly ex-works price of 95% lambda-cyhalothrin technical in China, Jan. 2014–Oct. 2017
Figure 3.7-4 Actual consumption of lambda-cyhalothrin (calculated by 95% TC) in China, 2012–2016
Figure 3.7-5 Consumption of lambda-cyhalothrin in China by crop, 2016
Figure 3.7-6 Forecast on output of lambda-cyhalothrin technical in China, 2017–2021
Figure 3.7-7 Forecast on demand for lambda-cyhalothrin (calculated by 95% TC) in China, 2017–2021
Figure 4.1-1 Output and share of herbicides in China's pesticide industry, 2007–2016
Figure 4.2-1 Capacity and output of glyphosate technical in China, 2012–H1 2017
Figure 4.2-2 Production pathways of glyphosate technical in China
Figure 4.2-3 Output share of glyphosate technical by different route in China, 2007–2016
Figure 4.2-4 Monthly ex-works price of glyphosate 95% technical in China, Jan. 2014–Oct. 2017
Figure 4.2-5 Monthly ex-works price of glyphosate 41% IPA in China, Jan. 2014–Oct. 2017
Figure 4.2-6 Forecast on demand for glyphosate (calculated by 95% TC) in China, 2017–2021
Figure 4.3-1 Capacity and output of acetochlor technical in China, 2012–H1 2017
Figure 4.3-2 Methylene route for acetochlor technical production in China
Figure 4.3-3 Ether route for acetochlor technical production in China
Figure 4.3-4 Annual average ex-works price of 92% acetochlor technical and acetochlor 900g/L EC in China, 2012–2016
Figure 4.3-5 Monthly average ex-works price of 92% acetochlor technical in China, Jan. 2014–Oct. 2017
Figure 4.3-6 Monthly average ex-works price of acetochlor 900g/L EC in China, Jan. 2014–Oct. 2015
Figure 4.3-7 Consumption of acetochlor in China by crop, 2016
Figure 4.3-8 Forecast on output of acetochlor technical in China, 2017–2021
Figure 4.3-9 Forecast on demand for acetochlor (converted to 92% TC) in China, 2017–2021
Figure 4.4-1 Capacity and output of paraquat TK (calculated by 42% TK) in China, 2012–H1 2017
Figure 4.4-2 Flowchart of AC process for paraquat production
Figure 4.4-3 Chemical principle of MC process for paraquat production
Figure 4.4-4 Ex-works price of paraquat 42% TK and 20% AS in China, 2012–Oct. 2017
Figure 4.4-5 Monthly ex-works price of paraquat 42% TK in China, Jan. 2014–Oct. 2017
Figure 4.4-6 Monthly ex-works price of paraquat 200g/L AS in China, Jan. 2014–Oct. 2017
Figure 4.4-7 Actual consumption volume and market value of paraquat in China, 2012–H1 2017
Figure 4.4-8 Consumption structure of paraquat in China by crop, 2016
Figure 4.4-9 China's exports of paraquat, 2012–2017
Figure 4.4-10 Forecast on output of paraquat (calculated by 42% TK) in China, 2017–2021
Figure 4.4-11 Forecast on consumption of paraquat (calculated by 42% TK) in China, 2017–2021
Figure 4.5-1 Capacity and output of dicamba technical in China, 2012–H1 2017
Figure 4.5-2 Monthly ex-works price of 98% dicamba technical in China, Jan. 2014–Oct. 2017
Figure 4.5-3 Monthly ex-works price of dicamba 48% AS in China, Jan. 2014–Oct. 2017
Figure 4.5-4 Actual consumption of dicamba (converted to 98% TC) in China, 2008–H1 2017
Figure 4.5-5 Actual consumption of dicamba (converted to 98% TC) in China by crop, 2016
Figure 4.5-6 Forecast on capacity and output of dicamba technical in China, 2017–2021
Figure 4.5-7 Forecast on global demand for dicamba (converted to 98% TC), 2017–2021
Figure 4.6-1 Capacity and output of glufosinate-ammonium technical in China, 2012–H1 2017
Figure 4.6-2 Monthly export prices of glufosinate-ammonium 95% technical and glufosinate-ammonium 200g/L AS in China, Jan. 2012–Aug. 2017
Figure 4.6-3 Consumption of glufosinate-ammonium (converted to 95% TC) in China, 2012–2016
Figure 4.6-4 Consumption of glufosinate-ammonium (calculated by 95% TC) in China by application field, 2016
Figure 4.6-5 Forecast on output of glufosinate-ammonium (calculated by 95% technical) in China, 2017-2021
Figure 4.6-6 Forecast on demand for glufosinate-ammonium (calculated by 95% technical) in China, 2017-2021
Figure 4.7-1 Capacity and output of 2,4-D technical in China, 2012–H1 2017
Figure 4.7-2 Flowchart of the method of chlorination followed with condensation for synthesizing 2,4-D
Figure 4.7-3 Flowchart of the method of condensation followed with chlorination for synthesizing 2,4-D
Figure 4.7-4 Annual ex-works price of 96% 2,4-D technical in China, 2012–2016
Figure 4.7-5 Monthly ex-works price of 96% 2,4-D technical in China, Jan. 2014–Oct. 2017
Figure 4.7-6 Monthly ex-works price of 2,4-D amine salt 720g/L SL in China, Jan. 2014–Oct. 2015
Figure 4.7-7 Actual consumption volume of 2,4-D in China, 2012–2016
Figure 4.7-8 Consumption of 2,4-D formulations by crops in China, 2016
Figure 4.7-9 Forecast on output of 2,4-D technical in China, 2017–2021
Figure 4.7-10 Forecast on demand for 2,4-D (calculated by 96% TC) in China, 2017–2021
Figure 5.1-1 Output and share of fungicides in China's pesticide industry, 2007-2016
Figure 5.2-1 Capacity and output of mancozeb technical in China, 2012–H1 2017
Figure 5.2-2 Flowchart of mancozeb synthesis in China
Figure 5.2-3 Chemical principle of mancozeb synthesis in China
Figure 5.2-4 Annual ex-works price of mancozeb technical in China, 2012–2016
Figure 5.2-5 Monthly ex-works price of 90% mancozeb technical in China, Jan. 2014–Oct. 2017
Figure 5.2-6 Annual ex-works price of mancozeb 80% WP in China, 2012–2016
Figure 5.2-7 Apparent consumption of mancozeb in China by crop, 2016
Figure 5.2-8 Forecast on output of mancozeb technical in China, 2017–2021
Figure 5.2-9 Forecast on demand for mancozeb (calculated by 85% TC) in China, 2017–2021
Figure 5.3-1 Capacity and output of carbendazim technical in China, 2012–H1 2017
Figure 5.3-2 Main chemical reaction in carbendazim production in China
Figure 5.3-3 Flowchart of carbendazim production in China
Figure 5.3-4 Annual ex-works price of 98% carbendazim technical in China, 2012–2016
Figure 5.3-5 Monthly ex-works price of 98% carbendazim technical in China, Jan. 2014–Oct. 2017
Figure 5.3-6 Monthly ex-works price of carbendazim 500g/L SC in China, Jan. 2009–Feb. 2013
Figure 5.3-7 Apparent consumption of carbendazim in China by crop, 2016
Figure 5.3-8 Forecast on output of carbendazim technical in China, 2017–2021
Figure 5.3-9 Forecast on demand for carbendazim (calculated by 98% TC) in China, 2017–2021
Figure 5.4-1 Capacity and output of tebuconazole technical in China, 2012–H1 2017
Figure 5.4-2 Production route of tebuconazole technical in China
Figure 5.4-3 Flowchart of tebuconazole technical production in China
Figure 5.4-4 Annual ex-works price of 97% tebuconazole technical in China, 2012–2016
Figure 5.4-5 Monthly ex-works price of 97% tebuconazole technical in China, Jan. 2014–Oct. 2017
Figure 5.4-6 Monthly ex-works price of tebuconazole 250g/L EC in China, Jan. 2008–Dec. 2012
Figure 5.4-7 Apparent consumption of tebuconazole (calculated by 97% technical) in China by crop, 2016
Figure 5.4-8 Forecast on output of tebuconazole technical in China, 2017–2021
Figure 5.4-9 Forecast on demand for tebuconazole (calculated by 97% TC) in China, 2017–2021
Figure 5.5-1 Capacity and output of difenoconazole technical in China, 2012–H1 2017
Figure 5.5-2 Route for producing difenoconazole technical in China
Figure 5.5-3 Flowchart of difenoconazole technical production in China
Figure 5.5-4 Annual ex-works price of 95% difenoconazole technical in China, 2012–2016
Figure 5.5-5 Monthly ex-works price of 95% difenoconazole technical in China, Jan. 2014–Oct. 2017
Figure 5.5-6 Annual ex-works price of difenoconazole 250g/L EC in China, 2012–2016
Figure 5.5-7 Annual ex-works price of difenoconazole 10% WDG in China, 2012–2016
Figure 5.5-8 Consumption of difenoconazole by crop in China, 2016
Figure 5.5-9 Forecast on output of difenoconazole technical in China, 2017–2021
Figure 5.5-10 Forecast on demand for difenoconazole (calculated by 95% TC) in China, 2017–2021
Figure 5.6-1 Capacity and output of chlorothalonil technical in China, 2012–H1 2017
Figure 5.6-2 Flowchart of chlorothalonil technical production in China
Figure 5.6-3 Catalytic chemical reaction in chlorothalonil production in China
Figure 5.6-4 Replacement chemical reaction in chlorothalonil production in China
Figure 5.6-5 Annual ex-works price of 98% chlorothalonil technical in China, 2012–2016
Figure 5.6-6 Monthly ex-works price of 98% chlorothalonil technical in China, Jan. 2014–Oct. 2017
Figure 5.6-7 Monthly ex-works price of chlorothalonil 75% WP in China, Jan. 2009–Feb. 2013
Figure 5.6-8 Apparent consumption of chlorothalonil in China by crop, 2016
Figure 5.6-9 Forecast on output of chlorothalonil technical in China, 2017–2021
Figure 5.6-10 Forecast on demand for chlorothalonil (calculated by 98% TC) in China, 2017–2021
Figure 5.7-1 Capacity and output of azoxystrobin technical in China, 2012–H1 2017
Figure 5.7-2 Route A for producing intermediate used in azoxystrobin technical production in China
Figure 5.7-3 Route B for producing intermediate used in azoxystrobin technical production in China
Figure 5.7-4 Route C for producing intermediate used in azoxystrobin technical production in China
Figure 5.7-5 Process route of azoxystrobin technical production in China
Figure 5.7-6 Annual ex-works price of azoxystrobin technical in China, 2012–2016
Figure 5.7-7 Monthly ex-works price of 96% azoxystrobin technical in China, Jan. 2014–Oct. 2017
Figure 5.7-8 Annual ex-works price of azoxystrobin 25% SC in China, 2012–2016
Figure 5.7-9 Annual ex-works price of azoxystrobin 50% WDG in China, 2012–2016
Figure 5.7-10 Apparent consumption of azoxystrobin (converted to 95% technical) in China by crop, 2016
Figure 5.7-11 Forecast on output of azoxystrobin technical in China, 2017–2021
Figure 5.7-12 Forecast on demand for azoxystrobin (converted to 95% technical) in China, 2017–2021
Figure 6.1-1 Ownership structure of Nanjing Red Sun Co., Ltd., 2016
Figure 6.2-1 Ownership structure of Zhejiang Wynca Chemical Industry Group Co., Ltd., 2016
Figure 6.3-1 Ownership structure of Jiangsu Yangnong Chemical Co., Ltd., 2016
Figure 6.4-1 Ownership structure of Shandong Weifang Rainbow Chemical Co., Ltd., Oct. 2017
Figure 6.6-1 Ownership structure of Hubei Sanonda Co., Ltd., Oct. 2017
Figure 6.7-1 Ownership structure of Nantong Jiangshan Agrochemical & Chemicals Co., Ltd., 2016
Figure 6.8-1 Ownership structure of Shandong Binnong Technology Co., Ltd., 2016
Figure 6.9-1 Ownership structure of Jiangsu Changlong Agrochemical Co., Ltd., Oct. 2017
Figure 6.12-1 Ownership structure of Shandong Qiaochang Chemical Co., Ltd., Oct. 2017
Figure 6.13-1 Ownership structure of Jiangsu Changqing Agrochemical Co., Ltd., 2016
Figure 6.14-1 Ownership structure of Jiangsu Huifeng Agrochemical Co., Ltd., 2016
Figure 6.15-1 Ownership structure of Lianhe Chemical Technology Co., Ltd., 2016
Figure 6.16-1 Ownership structure of Hunan Haili Chemical Industry Co., Ltd., 2016
Figure 6.17-1 Ownership structure of Jiangsu Good Harvest-Weien Agrochemical Co., Ltd., 2016
Figure 6.19-1 Ownership structure of Lier Chemical Co., Ltd., as of Oct. 2017
Figure 6.20-1 Ownership structure of Anhui Guangxin Agrochemical Co., Ltd., 2016
Figure 6.21-1 Ownership structure of Jiangsu Lanfeng Biochemical Co., Ltd., as of Oct. 2017
Figure 6.22-1 Ownership structure of Limin Chemical Co., Ltd., 2016
Figure 6.23-1 Ownership structure of Jiangsu Sevencontinent Green Chemical Co., Ltd., 2016
1. Introduction

Survey of Pesticide Industry in China is CCM's sixth edition report on Chinese pesticide industry, which has been finished in Jan. 2018. This study explores the history and future of pesticide industry in China and is comprised of two major sections:

Historical market analysis—a full market commentary provides a comprehensive understanding of Chinese pesticide industry in 2004–H1 2017. The development information is presented in a broad range of ways, such as supply, key producers, demand, technology, price and consumption. In this report, CCM chose 18 pesticides for deep research and those pesticides are highly paid attention to in pesticide industry in 2016–2017 according to CCM's investigation.

Future market analysis—expertise analysis provides the most credible forecast on pesticides in the coming five years (2017-2021)

This report examines China's pesticide industry from the following aspects:

- Supply and demand of pesticides in China
- Analysis of 18 key pesticides from aspects of production, key producers, technology, price and consumption

Table Pesticides studied in this report

<table>
<thead>
<tr>
<th>No.</th>
<th>Insecticide</th>
<th>Herbicide</th>
<th>Fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chlorpyrifos</td>
<td>Glyphosate</td>
<td>Mancozeb</td>
</tr>
<tr>
<td>2</td>
<td>Abamectin</td>
<td>Acetochlor</td>
<td>Carbendazim</td>
</tr>
<tr>
<td>3</td>
<td>Imidacloprid</td>
<td>Paraquat</td>
<td>Tebuconazole</td>
</tr>
<tr>
<td>4</td>
<td>Acephate</td>
<td>Dicamba</td>
<td>Difenoconazole</td>
</tr>
<tr>
<td>5</td>
<td>Thiamethoxam</td>
<td>Glufosinate-ammonium</td>
<td>Chlorothalonil</td>
</tr>
<tr>
<td>6</td>
<td>Lambda-cyhalothrin</td>
<td>2,4-D</td>
<td>Azoxystobrin</td>
</tr>
</tbody>
</table>
2. Approach for this report

- **Desk research**

The sources of desk research are various, including published magazines, journals, government statistics, industrial statistics, customs statistics, association seminars as well as information from the Internet. A lot of work went into compiling and analyzing the information obtained. Where necessary, checks were made with Chinese suppliers regarding market information such as production, demand, use and competition.

- **Telephone interviews**

The interviewees include:
- Pesticide producers
- Agricultural experts
- Traders
- Local governments
- Researchers
- Farmers
- Associations

CCM carried out extensive telephone interviews with key producers of pesticide technical as well as some key formulations to grasp the actual supply situation. In order to understand the application situation of pesticides in China, CCM also contacted domestic traders, experts and farmers as well.

- **Data processing and presentation**

The data collected and compiled were sourced from:
- Published articles from Chinese periodicals, magazines, journals, third-party databases
- Government statistics & customs statistics
- Telephone interviews with Chinese producers, traders, governments and farmers
- Comments from industrial experts
- Professional database from other sources
- Information from the Internet

The data from various channels have been combined to make this report as precise and scientific as possible. Throughout the process, a series of internal discussions were held in order to analyze the data and draw conclusions.
3. Executive summary

- **Overview of China's pesticides industry**

With over 60 years' development, China has become the biggest production base of pesticides in the world. China's pesticide output had kept an uptrend in 2012-2016, with a CAGR of XXX%, reaching XXX million tonnes (calculated by 100% TC) in 2016. Meanwhile, its output value grew at a CAGR(‘12-’16) of about XX%, hitting USDXXX billion in 2016.

As one of the biggest agricultural countries in the world, China has maintained its crop area of over XXX million hectares in the past four years (XXX million hectares of them were for grain planting), strongly supporting for large domestic pesticide demand. China's total pesticide demand was around XXX tonnes (calculated by 100% TC) in 2016, attracting more and more companies to enter China's pesticide market.

However, there are many problems in China's pesticide industry, such as overcapacity, inefficient production technologies, capital shortage, few well-known brands, and serious environmental pollution.

The Chinese government is now actively strengthening the pesticide industry by releasing stricter policies for environmental protection, raising threshold, phasing out highly toxic and highly residual pesticides, etc.

- **Pesticide supply**

Currently, China can produce XXX kinds of pesticide technical, and over XXX kinds have actual productive capacity, which are usually generic products. Traditional pesticides like glyphosate and chlorpyrifos usually account for the largest proportion of China’s pesticide products. Simple production technologies, mature production processes, stable market demand and sufficient raw material supply as well as easier registration approval are major reasons for such a large proportion of traditional pesticides in China. However, most traditional pesticide varieties face overcapacity currently.

The share of herbicide output in China firstly exceeded XXX% in 2013, and then decreased to XXX% in 2016; the share of insecticide output decreased from XXX% in 2013 to XXX% in 2016; the share of fungicide output decreased from XXX% in 2013 to XXX% in 2016.

China has been gradually endeavoring to heighten R&D capability of innovative pesticide creation. Up to now, about 30 new AI(s) have been developed. However, few of them have realized commercial production due to factors like capital shortage.

The registrations of traditional formulations, EC and WP, still keep dominant, but its share in...
terms of number of registrations kept decreasing. Along with the adjustment of formulation production and consumption, the proportion of environmentally friendly formulations such as WG, SC and EW is gradually increasing.

- **Pesticide producer**

China's pesticide production is mainly concentrated in East China including Jiangsu, Shandong, Henan and Zhejiang provinces, in terms of both the number of producers and tonnage, with the subtotal output contributing nearly XXX% to the national total pesticide output. Thereinto, Shandong and Jiangsu provinces are the most important regions for China's pesticide production.

In China, the total number of pesticide producers was estimated to be over XXX as of 2016, with only about XXX producers possessing the Three Certificates. In addition, only a few of them have developed their own technologies with self-dominated intellectual property rights. The total fund for new product research of the whole pesticide industry in China is no more than USDXXX billion annually, much less than that of even a single multinational player, such as Bayer CropScience, whose annual expenditure on innovation reaches about USDXXX billion.

- **Pesticide demand**

China is one of the largest pesticide consumption countries in the world, whose pesticide demand was estimated to be around XXX tonnes (calculated by 100% TC) in 2016, including XXX tonnes of herbicides, XXX tonnes of insecticides, XXX tonnes of fungicides and XXX tonnes of other pesticides.

China's pesticide consumption structure has changed slightly in recent years due to adjustment in planting structure, farmers' pesticide application habit, labor structure change, etc. For instance, China's insecticide consumption on cotton has reduced obviously since 1998 due to China's increasing promotion for cultivation of GM cotton with BT Gene.

- **Pesticide import and export**

China exports pesticides to over 160 countries and regions all over the world. According to the General Administration of Customs of China, the export volume of pesticides increased to XXX million tonnes in 2016, and herbicides kept the dominant role with the share of XXX% in terms of tonne.

China's import of pesticides showed a downtrend, with the volume being XXX tonnes in 2015 and XXX tonnes in 2016 respectively.
Outlook for China’s pesticide industry

As the key target of Chinese pesticide industry in the next few years, the 13th Five-Year (2016–2020) Development Plan for Pesticide Industry, one of the subsidiary policies under the 13th Five-Year Development Plan for Petroleum and Chemical Industry, mentions a series of goals as follows:

- The number of pesticide companies will decline by XXX%;

- Sales value of the top 20 pesticide companies shall account for XXX% of the total in China by 2020;

- XXX% of the pesticide technical companies shall be relocated to pesticide industrial parks;

- The number of innovative pesticides shall exceed XXX; R&D investment shall account for over XXX% of enterprises' annual revenue; total R&D investment shall account for over XXX% of enterprises' annual revenue in the whole pesticide industry;

- Till 2020, "three wastes" emissions should be reduced by XXX%, the yield shall increase by XXX%, utilization of by-product shall increase by XXX%, and pesticide waste disposal rate should reach XXX%.

Other goals involve bio-pesticides, technology innovation, etc.
4. What’s in this report?

Note: Key data/information in this sample page is hidden, while in the report it is not…

3 Market analysis of major insecticides in China

3.3 Abamectin

- Registration

Table 3.3-1 Registrations of abamectin in China, as of 1 Nov., 2017

<table>
<thead>
<tr>
<th>Specification</th>
<th>Number of registration</th>
<th>Number of company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single formulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>EW</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>ME</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>GR</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>WP</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>SC</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>CS</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>Others</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>Mixed formulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>SC</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>WP</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>ME</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>EW</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>GR</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>WG</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>Others</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>Technical</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>Total</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

Source: Institute for the Control of Agrochemicals, Ministry of Agriculture (ICAMA)

- Production

China has become the largest abamectin supplier in the world since 2003, with the capacity and output of abamectin technical reaching XXX t/a and XXX tonnes respectively in 2016.

Qilu Pharmaceutical is the largest abamectin technical producer in China with a total capacity
of XXX t/a in 2016. Two of its subsidiaries, namely Qilu King-Phar Pharmaceutical Co., Ltd. (Qilu King-Phar) and Qilu (Inner Mongolia) Pharmaceutical Co., Ltd. (Inner Mongolia Qilu), produce abamectin technical.

Figure 3.3-1 Capacity and output of abamectin technical in China, 2012–H1 2017

![Graph showing capacity and output of abamectin technical in China, 2012–H1 2017](source)

Source: CCM

Table 3.3-3 Capacity and output of major abamectin technical producers in China, 2016-H1 2017

<table>
<thead>
<tr>
<th>No.</th>
<th>Producer</th>
<th>Status, H1 2017</th>
<th>Capacity, t/a</th>
<th>Output 2016, tonne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H1 2017</td>
<td>2016</td>
</tr>
<tr>
<td>1</td>
<td>Qilu Pharmaceutical Co., Ltd.</td>
<td>Active</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>2</td>
<td>XXXXXXX.</td>
<td>Active</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>3</td>
<td>XXXXXXX.</td>
<td>Active</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>...</td>
<td>XXXXXXX.</td>
<td>Active</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>...</td>
<td>XXXXXXX.</td>
<td>Active</td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>XXX</td>
<td>XXX</td>
</tr>
</tbody>
</table>

Source: CCM
- Price

Figure 3.3-4 Monthly ex-works price of 95% abamectin technical in China, Jan. 2014 - Oct. 2017

![Price Graph](www.cnchemicals.com)

Source: CCM

...

- Consumption

Table 3.3-5 Output, export, import and apparent consumption of abamectin in China, 2012-2016, tonne

<table>
<thead>
<tr>
<th>Year</th>
<th>TC output</th>
<th>Export</th>
<th>Apparent consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>18g/L EC</td>
<td>20g/L EC</td>
</tr>
<tr>
<td>2012</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>2013</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>2014</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>2015</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>2016</td>
<td>XXXX</td>
<td>XXXX</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

Note: Apparent consumption = output + import - export

Source: China Customs & CCM
5.1 Overview of Chinese fungicide industry

Output

China, the largest production base and exporter of pesticides in the world, has produced XXX million tonnes of pesticide technical (calculated by 100% technical) in 2016 according to the National Bureau of Statistics of China, including XXX tonnes of fungicides. Most fungicides produced in China are generic products, and the whole Chinese fungicide industry is confronting some problems, like the plight of overcapacity, irrational competition, weak brand recognition and low added value of products.
Figure 5.1-1 Output and share of fungicides in China's pesticide industry, 2007–2016

Source: China Crop Protection Industry Yearbook

- **Major products**

Compared with insecticides and herbicides, varieties of fungicides produced in China are limited. Traditional fungicides like mancozeb and carbendazim are key species. With farmers’ growing preference to planting cash corps, such as vegetables, flowers, and fruits, fungicides’ output and species will be more and more in the next five years.

Table 5.1-1 Classification and major products of fungicides in China

<table>
<thead>
<tr>
<th>Category</th>
<th>Key product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic fungicides</td>
<td>Sulfur, copper sulfate, cuprous oxide, lime-sulfur</td>
</tr>
<tr>
<td>Organic sulfur fungicides</td>
<td>Mancozeb, thiram, zineb, ziram, propineb</td>
</tr>
<tr>
<td>Organophosphorus fungicides</td>
<td>Isoprothiolane, iprobenfos, phosethyl-Al</td>
</tr>
<tr>
<td>Substituted benzene fungicides</td>
<td>XXXX</td>
</tr>
<tr>
<td>Benzimidazole fungicides</td>
<td>XXXX</td>
</tr>
<tr>
<td>Triazole fungicides</td>
<td>XXXX</td>
</tr>
<tr>
<td>Other azole fungicides</td>
<td>XXXX</td>
</tr>
<tr>
<td>Antibacterial fungicides</td>
<td>XXXX</td>
</tr>
<tr>
<td>Others</td>
<td>XXXX</td>
</tr>
</tbody>
</table>

Source: CCM

If you want more information, please feel free to contact us
Tel: +86-20-37616606 Fax: +86-20-37616968
Email: econtact@cnchemicals.com